La Naturaleza de los Yacimientos Naturalmente Fracturados

Los yacimientos naturalmente fracturados plantean una paradoja relacionada con la producción. Incluyen yacimientos con baja recuperación de hidrocarburos: estos yacimientos pueden parecer altamente productivos al comienzo pero su producción declina rápidamente. Además, se caracterizan por la irrupción temprana de gas o agua. Por otra parte, forman parte de algunos de los yacimientos más grandes y productivos de la Tierra. La naturaleza paradójica de esta clase de yacimientos está dada por los grandes esfuerzos que hace la industria por comprenderlos mejor y modelarlos con suficiente certeza.

Si bien casi todos los yacimientos de hidrocarburos son afectados de alguna manera por las fracturas naturales, los efectos de las fracturas a menudo se conocen en forma imprecisa y en gran medida se subestiman. En los yacimientos carbonatados, las fracturas naturales ayudan a generar porosidad secundaria y estimulan la comunicación entre los compartimientos del yacimiento. No obstante, estos conductos de alta permeabilidad a veces entorpecen el flujo de fluidos dentro de un yacimiento, conduciendo a la producción prematura de agua o gas y haciendo que los esfuerzos de recuperación secundaria resulten ineficaces. Las fracturas naturales también están presentes en todo tipo de yacimiento siliciclástico, lo que complica el aparentemente simple comportamiento de la producción dominado por la matriz. Además, las fracturas naturales constituyen el factor de producibilidad principal en una amplia gama de yacimientos menos convencionales, incluyendo los yacimientos de metano en capas de carbón (CBM), los yacimientos de gas de lutitas y los yacimientos de roca basamento y roca volcánica. Si bien las fracturas naturales desempeñan un rol menos importante en los yacimientos de alta permeabilidad y alta porosidad, tales como las turbiditas, comúnmente forman barreras para el flujo, frustrando los intentos para calcular las reservas recuperables y predecir la producción con el tiempo en forma precisa.

Ignorar la presencia de las fracturas no es una práctica óptima de manejo de yacimientos; tarde o temprano, es imposible ignorar las fracturas porque el desempeño técnico y económico del yacimiento se degrada. El mayor riesgo que implica la falta de una caracterización temprana de las facturas naturales es que tal omisión puede limitar severamente las opciones de desarrollo de campos petroleros. Por ejemplo, una compañía que no aprovecha las oportunidades para las fracturas naturales durante la primera etapa de desarrollo puede desperdiciar recursos en operaciones de perforación de pozos de relleno innecesarias. Es probable que los equipos a cargo de los activos de las compañías nunca lleguen a extraer los hidrocarburos originalmente considerados recuperables porque, sin comprender el impacto de las fracturas naturales sobre el comportamiento de la producción, no habrán preparado adecuadamente el campo para la aplicación de técnicas de recuperación secundaria.

Clasificación de las fracturas
A la hora de desarrollar y modelar los yacimientos fracturados, la capacidad de comprender y predecir las características de los sistemas de fracturas y fallas es esencial. La complejidad de los sistemas de fracturas naturales se capta en los métodos descriptivos, genéticos y geométricos que los geocientíficos emplean para clasificar las fracturas naturales. El conocimiento de los tipos de fracturas mejora la simulación del flujo de fluidos a través de las fracturas, porque los diversos
tipos de fracturas conducen el fluido en forma diferente. Para apreciar los esquemas de clasificación comunes, se necesita un conocimiento básico de cómo se desarrollan las fracturas naturales. No obstante, para adquirir ese conocimiento se requiere algo más que la amplia observación de las fracturas naturales; es necesario vincular esas observaciones con datos de experimentos de laboratorio controlados. En el laboratorio, los tipos de fracturas se dividen en dos grupos relacionados con su modo de formación: las fracturas por esfuerzo de corte (cizalladura) que se forman con la cizalladura paralela a la fractura creada y las fracturas por esfuerzos de tracción que se forman con una tracción perpendicular a la fractura creada.

Las fracturas por esfuerzo de corte y las fracturas de tracción descriptas a partir de experimentos de laboratorio poseen contrapartes netas que existen naturalmente; las fracturas por esfuerzo de corte corresponden a fallas, mientras que las fracturas de tracción corresponden a grietas.16 Esta distinción de índole mecánica constituye una forma útil de clasificar las fracturas. Las fallas se forman en su mayor parte durante la ocurrencia de episodios tectónicos significativos, cuando el esfuerzo diferencial es alto. Las fallas tectónicas se forman habitualmente a lo largo de una amplia gama de escalas, con desplazamientos que varían desde milímetros hasta kilómetros. Las imágenes sísmicas generalmente permiten la detección de las fallas más grandes, mientras que se requieren datos de pozos para identificar y caracterizar las fallas más pequeñas. Las fallas tectónicas típicamente atraviesan la estratigrafía sin impedimentos y, en consecuencia, se conocen como fallas no limitadas por estratos. Las grietas, o fracturas que no exhiben un desplazamiento visible, se forman en sentido perpendicular a la estratificación y pueden ser o no limitadas por estratos. Las grietas limitadas por estratos terminan en las superficies de estratificación y a menudo desarrollan un espaciamiento regular y forman redes conectadas bien organizadas en una vista en planta. Comúnmente, existe una serie larga y continua de grietas, que se conocen como grietas sistemáticas, unidas por un arreglo perpendicular de grietas transversales que rematan las grietas sistemáticas. 17 Las grietas no limitadas por estratos tienen lugar en una amplia gama de escalas y se agrupan espacialmente.

Clasificación de los yacimientos fracturados
La mayoría de los yacimientos, si no todos, contienen fracturas. El grado en que las fracturas inciden en el flujo de fluidos a través de un yacimiento es lo que debería dictar el nivel de recursos necesarios para identificar, caracterizar y modelar las fracturas. Los efectos de las fracturas pueden cambiar a lo largo de la vida productiva del yacimiento como las presiones y los tipos de fluidos cambian durante las etapas de recuperación primaria y secundaria. Por otra parte, las fracturas no siempre conducen fluido; a menudo constituyen barreras para el fluido. Los yacimientos fracturados se clasifican en base a la interacción existente entre las contribuciones de porosidad y permeabilidad relativas tanto del sistema de fracturas como del sistema de matriz. En los yacimientos de Tipo 1, las fracturas proveen tanto los elementos de porosidad como los elementos de permeabilidad. Los yacimientos de Tipo 2 poseen baja porosidad y baja permeabilidad en la matriz y las fracturas proveen la permeabilidad esencial para la productividad. Los yacimientos de Tipo 3 poseen alta porosidad y pueden producir sin fracturas, de manera que las fracturas en estos yacimientos proveen permeabilidad adicional. Los yacimientos de tipo M poseen alta porosidad y permeabilidad matricial, de manera que las fracturas abiertas pueden mejorar la permeabilidad, pero las fracturas naturales a menudo complican el flujo de fluidos en estos yacimientos a través de la formación de barreras. Las fracturas no suman porosidad y permeabilidad adicional significativa a los yacimientos de Tipo 4, sino que, por el contrario, suelen constituir barreras para el flujo. Otra clase de yacimientos, los de Tipo G, ha sido creada para los yacimientos de gas fracturados no convencionales, tales como los yacimientos CBM, y para los yacimientos de gas condensado fracturados. La mayoría de los yacimientos de Tipo G corresponden o se aproximan a la clasificación de Tipo 2. Para que la clasificación NFR resulte válida, se debe conocer tanto el sistema de fracturas naturales como el sistema de matriz de un yacimiento, además de la compleja interacción de flujo entre esos sistemas. Muchos son los factores que afectan el flujo de fluidos en un yacimiento NFR, incluyendo la orientación de los esfuerzos, las direcciones de las fracturas naturales, si las fracturas están rellenas de minerales o son abiertas, las propiedades y fases de los fluidos de yacimientos, y la historia de producción e inyección del campo. Si bien muchos de estos factores no pueden ser controlados, algunos problemas pueden mitigarse. Por lo tanto, las estrategias de desarrollo de campos petroleros pueden ajustarse a los sistemas de fracturas naturales para optimizar la producción y la recuperación. Cuanto antes se adquiera este conocimiento, más preparados estarán los equipos a cargo de los activos de las compañías para tomar decisiones importantes relacionadas con el manejo de campos petroleros en las primeras etapas de su desarrollo.

1 comentarios:

Fernando Atlahua 22 de mayo de 2009, 23:27  

Bastante bien la información. Sería bueno alguna bibliografía para ahondar mas en el tema.

Me interesaría conocer otras clasificaciones de Yacimientos Naturalmente Fracturados

¡Gracias por publicar!

About me

Photostream